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Abstract. In the setting of 3D local mesh refinement, we present the theoret-

ical construction and the implementation aspects of the Bramble-Pasciak-Xu
(BPX) preconditioner. The refinement under consideration is the 3D local red-

green refinement procedure introduced by Bornemann-Erdmann-Kornhuber

(BEK). We outline how to construct the theoretical optimality of the BPX
preconditioner in the setting of elliptic second order PDEs. Hence, the result-

ing BPX preconditioner for the BEK refinement setting has provably optimal

(linear) computational complexity per iteration, as well as having a uniformly
bounded condition number. We provide detailed comparisons of the BPX

preconditioner to hierarchical basis (HB) and wavelet modified HB precondi-

tioners including the flop counts. Numerical experiments in 2D are presented
for both the additive and multiplicative versions of the above preconditioners.

1. Introduction

In this article, we present the theoretical construction and the implementation
aspects of the well-known Bramble-Pasciak-Xu (BPX) preconditioner. The BPX
preconditioner is the parallelized or additive version of the multigrid preconditioner.
The BPX preconditioner turned out to be an attractive choice for many applications
because of this parallelization feature.

The classical treatment and the theoretical results of the BPX preconditioner
were given primarily in the setting of uniform refinement. Extension of such results
to local refinement has been realized with optimal computational and theoretical
estimates in 2D. Optimality of the BPX preconditioner with generic local refine-
ment was shown by Bramble-Pasciak [8], where the impact of the local smoother
and the local projection operator on the estimates was carefully analyzed. The
two primary results on the optimality of BPX preconditioner in the local refine-
ment settings are due to Dahmen-Kunoth [9] and Bornemann-Yserentant [6]. Both
works consider only two space dimensions, and in particular, the refinement strate-
gies analyzed are restricted to 2D red-green refinement and 2D red refinement,
respectively. (Green refinement means bisection and red refinement means quadra-
section and octasection in 2D and 3D, respectively.) Furthermore, extensions of 2D
estimates to a realistic 3D local mesh refinement procedure were established by Ak-
soylu [1], Aksoylu-Holst [3], and Aksoylu-Bond-Holst [2]. The refinement procedure
of interest is a practical, implementable 3D local red-green refinement procedure
introduced by Bornemann-Erdmann-Kornhuber (BEK) [5]. We will refer to this
as the BEK refinement procedure. The results in [1, 2, 3] are valid for any spa-
tial dimension d ≥ 1, for nonsmooth PDE coefficients p ∈ L∞(Ω). The estimates
provided for the BPX preconditioner throughout this article are provable.
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Adaptive refinement techniques have become a crucial tool for many applica-
tions, and access to optimal or near-optimal multilevel preconditioners for locally
refined mesh situations is of primary concern to computational scientists. Hence,
we treat the BPX preconditioner in a more general framework for the sake of a
comprehensive presentation. This is the framework of local refinement and multi-
level preconditioning. We present the impact of 2D/3D local mesh refinement on
the optimality (linear storage and time complexity) of multilevel preconditioners.
Besides the BPX preconditioner, the preconditioners which can be expected to have
somewhat favorable storage and time complexity in such local refinement scenarios
are the hierarchical basis (HB) method and the wavelet modified (or stabilized) hi-
erarchical basis (WMHB) method. All the above preconditioners belong to the class
of additive Schwarz methods. We provide comparisons of these preconditioners.

The problem class we focus on here is linear second order partial differential
equations (PDE) of the form:

−∇ · (p ∇u) + q u = f, u ∈ H1
0 (Ω). (1)

Here, f ∈ L2(Ω), p, q ∈ L∞(Ω), p : Ω → L(Rd, Rd), q : Ω → R, where p is a
symmetric positive definite matrix function, and where q is a nonnegative function.
Let T0 be a shape regular and quasiuniform initial partition of Ω into a finite number
of d simplices, and generate T1, T2, . . . by refining the initial partition using red-green
local refinement strategies in d = 3 spatial dimensions. Denote as Sj the simplicial
linear C0 finite element space corresponding to Tj equipped with zero boundary
values. The set of nodal basis functions for Sj is denoted by Φ(j) = {φ(j)

i }Nj

i=1

where Nj = dim Sj is equal to the number of interior nodes in Tj , representing
the number of degrees of freedom in the discrete space. Successively refined finite
element spaces will form the following nested sequence:

S0 ⊂ S1 ⊂ . . . ⊂ Sj ⊂ . . . ⊂ H1
0 (Ω).

Let the bilinear form and the functional associated with the weak formulation
of (1) be denoted as

a(u, v) =
∫

Ω

p ∇u · ∇v + q u v dx, b(v) =
∫

Ω

f v dx, u, v ∈ H1
0 (Ω).

We consider primarily the following Galerkin formulation: Find u ∈ Sj , such that

a(u, v) = b(v), ∀v ∈ Sj . (2)

The finite element approximation in Sj has the form u(j) =
∑Nj

i=1 uiφ
(j)
i , where u =

(u1, . . . , uNj
)T denotes the coefficients of u(j) with respect to Φ(j). The resulting

discretization operator Aj = {a(φ(j)
k , φ

(j)
l )}Nj

k,l=1 must be inverted numerically to
determine the coefficients u from the linear system:

Aju = Fj , (3)

where Fj = {b(φ(j)
l )}Nj

l=1. Our task is to solve (3) with optimal (linear) complexity
in both storage and computation, where the finite element spaces Sj are built on
locally refined meshes.
Outline of the paper. In §2, we outline the BPX preconditioner in the local
refinement setting and make the connection between the (implementable) BPX
preconditioner and the corresponding slice operator which is used in the norm
equivalence to H1-norm. §3 is dedicated to linear algebra in which we outline
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the matrix representation of the BPX and HB preconditioners. In §4, we list the
BEK refinement conditions. We give several theorems about the generation and
size relations of the neighboring simplices, thereby establishing local (patchwise)
quasiuniformity. In §5, we list the choices for local smoothers and elaborate on these
in §6 and §7. In §7, we explicitly give an upper bound for the nodes introduced in
the refinement region. This implies that one application of the BPX preconditioner
to a function has linear (optimal) computational complexity. We present numerical
experiments in §8. We conclude in §9.

2. Preliminaries

In the uniform refinement setting, the parallelized or additive version of the
multigrid method, also known as the BPX preconditioner, is defined as follows:

Xu :=
J∑

j=0

2j(d−2)

Nj∑
i=1

(u, φ
(j)
i )φ(j)

i . (4)

In the local refinement setting, in order to maintain optimal computational com-
plexity, the smoother is restricted to a local space S̃j , typically

(Ij − Ij−1) Sj ⊆ S̃j ⊂ Sj , (5)

where Ij : L2(Ω) → Sj denotes the finite element interpolation operator. The
subspace genereated by the nodal basis functions corresponding to fine or newly
created degrees of freedom (DOF) on level j is denoted by (Ij − Ij−1) Sj .

The basic restriction on the refinement procedure is that it remains nested. In
other words, tetrahedra of level j which are not candidates for further refinement
will never be touched in the future. Let Ωj denote the refinement region, namely,
the union of the supports of basis functions which are introduced at level j. Due
to nested refinement Ωj ⊂ Ωj−1. Then the following hierarchy holds:

ΩJ ⊂ ΩJ−1 ⊂ · · · ⊂ Ω0 = Ω.

The main ingredient in the local refinement setting for the analysis of the BPX
preconditioner is the local quasi-interpolant which is given in [3]:

Q̃j : L2(Ω) → Sj . (6)

In fact, in our construction this operator will turn out to be a projection, i.e. L2-
self-adjoint and Q̃2

j = Q̃j . For u ∈ SJ , the projection Q̃j will have the local property
that (Q̃j − Q̃j−1)u vanishes outside of Ωj . A detailed discussion on the vanishing
property is also presented by Oswald [14, page 94]. Let the local smoothing operator
be the following symmetric positive definite operator (examples of these are given
in [7]):

R̃j : S̃j → S̃j ,

where S̃j := (Q̃j − Q̃j−1)SJ . Moreover, the following assumption (which naturally
holds) will be enforced on R̃j :

2−2j‖v‖2 h (R̃jv, v), v ∈ S̃j . (7)

This choice for S̃j indicates that the smoother acts on a local collection of DOF
which will give rise to optimal computational complexity per iteration. Nodes–
equivalently, DOF–corresponding to S̃j and their cardinality will be denoted by
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Ñj and Ñj , respectively. We now define the BPX preconditioner for the local
refinement setting as:

Xu :=
J∑

j=0

2j(d−2)
∑
i∈Ñj

(u, φ
(j)
i )φ(j)

i . (8)

The multilevel splitting of u ∈ SJ using (6) is then

u =
J∑

j=0

(Q̃j − Q̃j−1)u, (9)

with Q̃−1 = 0 and Q̃J is the identity on SJ . If Q̃j is a local projection such as a local
quasi-interpolant, then the individual terms in this splitting are locally supported.
The main difference in the analysis between the local and uniform refinement cases
lies in the choice of the projection. Namely, in the uniform refinement case, the L2-
projection, Qj : L2(Ω) → Sj , is used for the splitting in (9). But since (Qj−Qj−1)u
has global support, it is not a practical choice that will lead to an optimal method.
Therefore, in the local refinement case, we employ the local projection Q̃j which
allows for optimal computational complexity. While the analysis is be based on the
use of Q̃j , all results also hold for projections which are globally supported such as
Qj with the exception of the optimal computational complexity result in (19). In
particular, the main optimal norm equivalence result (10) holds for Qj as well as
Q̃j .

Throughout this article we use the following standard notation: for x, y ∈ R+

and universal constants c1, c2 ∈ R+, we write:

x h y if c1y ≤ x ≤ c2y.

We first move to a general analysis framework where (8) becomes a special case.
For the construction of the theoretical framework, the following operator will be
referred as the BPX preconditioner for u ∈ SJ .

Bu :=
J∑

j=0

R̃j(Q̃j − Q̃j−1)u.

Utilizing the splitting (9), one can write u =
∑J

j=0 u(j)f

, where u(j)f

:= (Q̃j −
Q̃j−1)u. Note that B can be written as a diagonal operator using (9):

B = diag(R̃0Q̃0, R̃1(Q̃1 − Q̃0), . . . , R̃J(Q̃J − Q̃J−1)).

Using the projection properties, one can observe that

R̃j(Q̃j − Q̃j−1)R̃−1
j (Q̃j − Q̃j−1)u(j)f

= u(j)f

.

Then,

B−1 = diag(R̃−1
0 Q̃0, R̃

−1
1 (Q̃1 − Q̃0), . . . , R̃−1

J (Q̃J − Q̃J−1)).

The ultimate goal is the prove the following norm equivalence

(B−1u, u) h (Au, u),
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which will give κ(BA) h 1. To reach this goal, we use the slice operator induced
by the splitting (9):

Cu :=
J∑

j=0

22j(Q̃j − Q̃j−1)u.

Now, we can link the two operators by using (7).

(B−1u, u) =
J∑

j=0

(R̃−1
j (Q̃j − Q̃j−1)u, (Q̃j − Q̃j−1)u)

h
J∑

j=0

22j‖(Q̃j − Q̃j−1)u‖2
L2

= (Cu, u).

Therefore, one focuses entirely on establishing the following norm equivalence:

(Cu, u) h (Au, u). (10)

We conclude the theoretical construction by indicating that the norm equivalence
(10) is equivalent to the statement of establishing the optimality of the BPX precon-
ditioner. In the following sections, we concentrate on the implementation aspects
of the BPX preconditioner.

3. Overview of the multilevel methods

Let the prolongation operator from level j − 1 to j be denoted by

P j
j−1 ∈ RÑj×Ñj−1 ,

and also denote the prolongation operator from level j to J as:

Pj ≡ P J
j = P J

J−1 . . . P j+1
j ∈ RNJ×Ñj ,

where P J
J is defined to be the rectangular identity matrix I ∈ RNJ×ÑJ−1 . Then the

matrix representation of (4) becomes [18]:

X =
J∑

j=0

2j(d−2)PjP
t
j .

One can also introduce a version with an explicit smoother Gj :

X =
J∑

j=0

PjGjP
t
j .

Throughout this article, the smoother Gj ∈ RÑj×Ñj is a symmetric Gauss-Seidel
iteration. Namely, Gj = (Dj +Uj)−1Dj(Dj +Lj)−1 where Aj = Dj +Lj +Uj with
Ñ0 = N0. Note that Gj satisfies (7).

If the smoother is restricted to the space generated by fine or newly created
basis functions, i.e. S̃j := (Ij − Ij−1) Sj , then (4) corresponds to the additive HB
preconditioner in [19]:

XHBu =
J∑

j=0

2j(d−2)

Nj∑
i=Nj−1+1

(u, φ
(j)
i )φ(j)

i , u ∈ SJ . (11)

The matrix representation of (11) is formed from matrices Hj which are simply the
tails of the Pj corresponding to newly introduced DOF in the fine space. In other
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words, Hj ∈ RNJ×(Nj−Nj−1) is given by only keeping the fine columns (the last
Nj −Nj−1 columns of Pj). Hence, the matrix representation of (11) becomes:

XHB =
J∑

j=0

2j(d−2)HjH
t
j .

Finally, we note that the splitting in (9) gives rise to a direct decomposition
Sj = Sj−1 ⊕ Sf

j , hence Aj can be represented by a two-by-two block form:

Aj =

[
Aj−1 A

(j)
12

A
(j)
21 A

(j)
22

]
} Sj−1

} Sf
j

, (12)

where Aj−1, A
(j)
12 , A

(j)
21 , and A

(j)
22 correspond to coarse-coarse, coarse-fine, fine-

coarse, and fine-fine interactions respectively.

4. The BEK refinement procedure

Our interest is to show optimality of the BPX preconditioner for the 3D local
red-green refinement introduced by Bornemann-Erdmann-Kornhuber [5]. This 3D
red-green refinement is practical, easy to implement, and numerical experiments
were presented in [5]. A similar refinement procedure was analyzed by Bey [4]; in
particular, the same green closure strategy was used in both papers. While these
refinement procedures are known to be asymptotically non-degenerate (and thus
produce shape regular simplices at every level of refinement), shape regularity is
insufficient to construct a stable Riesz basis for finite element spaces on locally
adapted meshes. To construct a stable Riesz basis we will need to establish patch-
wise quasiuniformity as in [9]. Riesz bases are out of the scope of this article, but
are discussed in detail in [3]. As a result, d-vertex adjacency relationships that
are independent of shape regularity of the elements must be established between
neighboring tetrahedra as done in [9] for triangles.

We first list a number of geometric assumptions we make concerning the under-
lying mesh. Let Ω ⊂ R3 be a polyhedral domain. We assume that the triangulation
Tj of Ω at level j is a collection of tetrahedra with mutually disjoint interiors which
cover Ω =

⋃
τ∈Tj

τ . We want to generate successive refinements T0, T1, . . . which
satisfy the following conditions:

Assumption 4.1. Nestedness: Each tetrahedron (son) τ ∈ Tj is covered by
exactly one tetrahedron (father) τ ′ ∈ Tj−1, and any corner of τ is either a corner
or an edge midpoint of τ ′.

Assumption 4.2. Conformity: The intersection of any two tetrahedra τ, τ ′ ∈ Tj

is either empty, a common vertex, a common edge or a common face.

Assumption 4.3. Nondegeneracy: The interior angles of all tetrahedra in the
refinement sequence T0, T1, . . . are bounded away from zero.

A regular (red) refinement subdivides a tetrahedron τ into 8 equal volume subte-
trahedra. We connect the edges of each face as in 2D regular refinement. We then
cut off four subtetrahedra at the corners which are congruent to τ . An octahedron
with three parallelograms remains in the interior. Cutting the octahedron along
the two faces of these parallelograms, we obtain four more subtetrahedra which are
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not necessarily congruent to τ . We choose the diagonal of the parallelogram so that
the successive refinements always preserve nondegeneracy [1, 4, 13, 20].

If a tetrahedron is marked for regular refinement, the resulting triangulation
violates conformity A.4.2. Nonconformity is then remedied by irregular (green)
refinement. In 3D, there are altogether 26 = 64 possible edge refinements, of which
62 are irregular. One must pay extra attention to irregular refinement in the im-
plementation due to the large number of possible nonconforming configurations.
Bey [4] gives a methodical way of handling irregular cases. Using symmetry argu-
ments, the 62 irregular cases can be divided into 9 different types. To ensure that
the interior angles remain bounded away from zero, we enforce the following addi-
tional conditions. (Identical assumptions were made in [9] for their 2D refinement
analogue.)

Assumption 4.4. Irregular tetrahedra are not refined further.

Assumption 4.5. Only tetrahedra τ ∈ Tj with L(τ) = j are refined for the con-
struction of Tj+1, where L(τ) = min {j : τ ∈ Tj} denotes the level of τ .

One should note that the restrictive character of A.4.4 and A.4.5 can be elimi-
nated by a modification on the sequence of the tetrahedralizations [4]. On the other
hand, it is straightforward to enforce both assumptions in a typical local refinement
algorithm by minor modifications of the supporting datastructures for tetrahedral
elements (cf. [10]). In any event, the proof technique requires both assumptions
hold. The last refinement condition enforced for the possible 62 irregularly refined
tetrahedra is stated as the following.

Assumption 4.6. If three or more edges are refined and do not belong to a common
face, then the tetrahedron is refined regularly.

We note that the d-vertex adjacency generation bound for simplices in Rd which
are adjacent at d vertices is the primary result required in the support of a basis
function, and depends delicately on the particular details of the local refinement
procedure rather than on shape regularity of the elements. The generation bound
for simplices which are adjacent at d − 1, d − 2, . . . vertices follows by using the
shape regularity and the generation bound established for d-vertex adjacency. We
provide rigorous generation bounds for all the adjacency types mentioned in the
lemmas to follow when d = 3. The 2D version appeared in [9]; the 3D extension is
as described below without any additional framework.

Lemma 4.1. Let τ and τ ′ be two tetrahedra in Tj sharing a common face f . Then

|L(τ)− L(τ ′)| ≤ 1. (13)

Proof. If L(τ) = L(τ ′), then 0 ≤ 1, there is nothing to show. Without loss of
generality, assume that L(τ) < L(τ ′). Proof requires a detailed and systematic
analysis. To show the line of reasoning, we first list the facts used in the proof:

(1) L(τ ′) ≤ j because by assumption τ ′ ∈ Tj . Then, L(τ) < j.
(2) By assumption τ ∈ Tj , meaning that τ was never refined from the level it

was born L(τ) to level j.
(3) Let τ ′′ be the father of τ ′. Then L(τ ′′) = L(τ ′)− 1 < j.
(4) L(τ) < L(τ ′) by assumption, implying L(τ) ≤ L(τ ′′).
(5) By (2), τ belongs to all the triangulations from L(τ) to j, in particular

τ ∈ TL(τ ′′), where by (3) L(τ ′′) < j.



8 B. AKSOYLU, M. HOLST, AND S. BOND

f is the common face of τ and τ ′ on level j. If τ ′ is obtained by regular refinement
of its father τ ′′, then f is still the common face of τ and τ ′′. By (5) both τ, τ ′′ ∈
TL(τ ′′). Then, A.4.2 implies that f is the common face of τ and τ ′′. Hence, τ ′ must
have been irregular.

On the other hand, L(τ) ≤ L(τ ′)− 1 = L(τ ′′). Next, we proceed by eliminating
the possibility that L(τ) < L(τ ′′). If so, we repeat the above reasoning, and τ ′′

becomes irregular. τ ′′ is already the father of the irregular τ ′, contradicting A.4.4
for level L(τ ′′). Hence L(τ) = L(τ ′′) = L(τ ′)− 1 concludes the proof. �

By A.4.4 and A.4.5, every tetrahedron at any Tj is geometrically similar to some
tetrahedron in T0 or to a tetrahedron arising from an irregular refinement of some
tetrahedron in T0. Then, there exist absolute constants c1, c2 such that

c1 diam(τ̄) 2−L(τ) ≤ diam(τ) ≤ c2 diam(τ̄) 2−L(τ), (14)

where τ̄ is the father of τ in the initial mesh. The lemma below follows by shape
regularity and (13).

Lemma 4.2. Let τ, τ ′ and ζ, ζ ′ be the tetrahedra in Tj sharing a common edge (two
vertices) and a common vertex, respectively. Then there exist finite numbers V and
E depending on the shape regularity such that

|L(τ)− L(τ ′)| ≤ V, (15)
|L(ζ)− L(ζ ′)| ≤ E. (16)

Consequently, simplices in the support of a basis function are comparable in size
as indicated in (17). This is usually called patchwise quasiuniformity. Further-
more, it was shown in [1] that patchwise quasiuniformity (17) holds for 3D marked
tetrahedron bisection by Joe and Liu [11] and for 2D newest vertex bisection by
Sewell [15] and Mitchell [12]. Due to restrictive nature of the proof technique, we
focus on refinement procedures which obey A.4.4 and A.4.5.

Lemma 4.3. There is a constant depending on the shape regularity of Tj and the
quasiuniformity of T0, such that

diam(τ)
diam(τ ′)

≤ c, ∀τ, τ ′ ∈ Tj , τ ∩ τ ′ 6= ∅. (17)

Proof. τ and τ ′ are either face-adjacent (d vertices), edge-adjacent (d− 1 vertices),
or vertex-adjacent, and are handled by (13), (16), (15), respectively.

diam(τ)
diam(τ ′)

≤ c 2|L(τ)−L(τ ′)| diam(τ̄)
diam(τ̄ ′)

(by (14))

≤ c 2max{1,E,V } γ(0) (by (13), (16), (15) and quasiuniformity of T0)

�

5. Local smoothing and choices for S̃j

Only in the presence of a geometric increase in the number of DOF, the same
assumption for optimality of a single classical (i.e. smoother acting on all DOF)
multigrid or BPX iteration, does the cost per iteration remain optimal. In the case
of local refinement, the classical BPX preconditioner (4) can easily be suboptimal
because of the suboptimal cost per iteration (see Figure 3). On the other hand, the
HB preconditioner (11) suffers from a suboptimal iteration count.
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As mentioned in §2, the above deficiencies of the preconditioners (4) and (11) can
be overcome by restricting the smoother to a space S̃j as in (5). Recalling that we
have a nested refinement, the only restriction enforced on the DOF over which the
smoother acts is that they are contained in the region of refinement, i.e. Ñj ⊂ Ωj .

There are three popular choices for Ñj . These choices are obtained by the
following DOF corresponding to:

• (DOF-1) The basis functions with supports that intersect Ωj [6, 8, 9].
• (DOF-2) The basis functions with supports that are contained in Ωj [14].
• (DOF-3) Created by red refinement and their corresponding coarse DOF.

The intereseting ones are (DOF-1) and (DOF-3) and we would like to elaborate
on these. We used (DOF-1) in our numerical experiments and we will provide a
provably optimal computational complexity for (DOF-3) in §7.

6. Onering neighbors–(DOF-1)

We call the set in (DOF-1) as onering of fine DOF, namely, the set which contains
fine DOF and their immediate neighboring coarse DOF. The onering neighbors of
the fine nodes can be directly determined by the sparsity pattern of the fine-fine
subblock A

(j)
22 of the stiffness matrix in (12). The set of DOF over which the BPX

method smooths is simply the union of the column locations of nonzero entries
corresponding to fine DOF. Using this observation, HB smoother can easily be
modified to be a BPX smoother. In short, the BPX preconditioner in the flavor of
(DOF-1) is obtained by restricting i in (4) to the following set:

ONERING(j) = {onering(ii) : ii = Nj−1 + 1, . . . , Nj}.

This is the BPX preconditioner used for 2D local refinement numerical experiments.

7. Local smoothing computational complexity–(DOF-3)

(DOF-3) is equivalent to the following set:

Ñj = {i = Nj−1 + 1, . . . , Nj}
⋃
{i : φ

(j)
i 6= φ

(j−1)
i , i = 1, . . . , Nj−1}, (18)

and the corresponding space over which the smoother acts:

S̃j = span
[⋃

{φ(j)
i }Nj

i=Nj−1+1

⋃
{φ(j)

i 6= φ
(j−1)
i }Nj−1

i=1

]
.

This set is used in the BEK construction [5] and we utilize this set for the
estimates of 3D local refinement. Since green refinement simply bisects a simplex,
the modified basis function is the same as the one before the bisection due to
linear interpolation. So the set of DOF in (18) corresponds to DOF created by
red refinement and corresponding coarse DOF (father DOF). The following crucial
result from [5] establishes a bound for the number of nodes used for smoothing. This
indicates that the BPX preconditioner has provably optimal (linear) computational
complexity per iteration on the resulting 3D mesh produced by the BEK refinement
procedure.

Lemma 7.1. The total number of nodes used for smoothing satisfies the bound:
J∑

j=0

Ñj ≤
5
3
NJ −

2
3
N0. (19)
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Proof. See [5, Lemma 1]. �

The above lemma constitutes the first computational complexity optimality re-
sult in 3D for the BPX preconditioner. A similar result for 2D red-green refinement
was given by Oswald [14, page 95]. In the general case of local smoothing operators
which involve smoothing over newly created basis functions plus some additional
set of local neighboring basis functions, one can extend the arguments from [5]
and [14] using shape regularity.

8. Numerical Experiments

Figure 1. Adaptive mesh, experiment set I.

The test problem is as follows:

−∇ · (p ∇u) + q u = f, x ∈ Ω ⊂ R2,

n · (p ∇u) = g, on ΓN ,

u = 0, on ΓD,

where Ω = [0, 1]× [0, 1] and

p =
[

1 0
0 1

]
, and q = 1.

The source term f is constructed so that the true solution is u = sinπx sinπy. We
present two experiment sets in which adaptivity is driven by a geometric criterion.
Namely, the simplices which intersect with the quarter circle centered at the origin
with radius 0.25 and 0.05, in experiment sets I and II respectively, are repeatedly
marked for further refinement.
• Boundary conditions for the domain in experiment set I:

ΓN = {(x, y) : x = 0, 0 < y < 1} ∪ {(x, y) : x = 1, 0 < y < 1}
ΓD = {(x, y) : 0 ≤ x ≤ 1, y = 0} ∪ {(x, y) : 0 ≤ x ≤ 1, y = 1}.
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• Boundary conditions for the domain in experiment set II:

ΓN = {(x, y) : 0 ≤ x ≤ 1, y = 0} ∪ {(x, y) : 0 ≤ x ≤ 1, y = 1}
∪{(x, y) : x = 0, 0 ≤ y ≤ 1} ∪ {(x, y) : x = 1, 0 ≤ y ≤ 1}.

Stopping criterion: ‖error‖A < 10−7.
In experiment set I, red-green refinement subdivides simplices intersecting an arc

of radius 0.25 which gives rise to a rapid increase in the number of DOF. Although
we have an adaptive refinement strategy, this indeed creates a geometric increase
in the number of DOF, see Figure 1. Experiment set II is designed so that a small
number of DOF is introduced at each level. In order to do this, green refinement
subdivides simplices intersecting a smaller arc with radius 0.05.

Table 1. MCLite iteration counts for various methods, red-green
refinement driven by geometric refinement, experiment set I.

Levels 1 2 3 4 5 6 7 8
MG 1 4 7 7 7 6 6 6
M.BPX 1 4 7 7 7 7 6 6
HBMG 1 10 19 28 32 37 45 56
WMHBMG 1 6 12 13 16 17 17 17
PCG-MG 1 3 4 5 5 5 5 5
PCG-M.BPX 1 3 5 5 5 5 5 5
PCG-HBMG 1 3 7 10 12 14 15 16
PCG-WMHBMG 1 3 7 7 9 9 9 9
PCG-A.MG 1 8 13 17 20 21 23 24
PCG-BPX 1 6 12 14 17 17 18 18
PCG-HB 1 5 14 21 26 32 38 41
PCG-WMHB 1 5 12 15 19 20 21 21
Nodes 16 19 31 55 117 219 429 835
DOF 8 10 21 43 102 202 410 814

In all the experiments, we utilize a direct coarsest level solve and the smoother
is a symmetric Gauss-Seidel iteration. Set of DOF on which the smoother acts
is the fundamental difference between the methods. Classical multigrid methods
smooth on all DOF, whereas HB-like methods smooth only on fine DOF. WMHB
style methods smooth as HB methods do, but in a different basis. BPX methods
smooth on the onering of the fine DOF, which is more than HB methods but less
than classical multigrid.

There are four multiplicative methods under consideration: MG, M.BPX, HBMG,
and WMHBMG. The following is a guide to the tables and figures below. MG will
refer to classical multigrid, in particular corresponds to the standard V-cycle imple-
mentation. HBMG corresponds exactly to the MG algorithm, but where pre- and
post-smoothing are restricted to fine DOF. M.BPX refers to multiplicative version
of BPX with the smoother is restricted to fine DOF and their immediate coarse
neighbors which are often called as the onering neighbors. The onering neighbors
of the fine nodes can be directly determined by the sparsity pattern of the fine-fine
subblock A22 of the stiffness matrix in (12). The set of DOF over which the BPX
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Table 2. MCLite iteration counts for various methods, green re-
finement driven by geometric refinement, experiment set II.

Levels 1 2 3 4 5 6 7
8 9 10 11 12 13 14

MG 1 3 4 3 4 4 3
4 4 4 4 4 4 4

M.BPX 1 4 4 4 4 4 4
4 5 5 5 5 5 5

HBMG 1 13 14 16 22 25 26
30 32 32 36 38 42 44

WMHBMG 1 8 11 11 12 12 12
13 15 15 15 15 15 15

PCG-MG 1 2 3 3 3 4 3
3 4 3 4 3 3 3

PCG-M.BPX 1 2 3 4 4 3 4
4 4 4 4 4 4 4

PCG-HBMG 1 2 5 7 8 9 10
10 11 12 11 12 13 13

PCG-WMHBMG 1 2 5 6 6 7 7
8 8 8 8 8 8 8

PCG-A.MG 1 10 13 15 18 20 21
23 25 26 28 28 28 29

PCG-BPX 1 6 10 11 13 14 15
16 18 19 19 20 20 21

PCG-HB 1 3 9 11 14 18 20
22 24 27 30 32 34 36

PCG-WMHB 1 3 9 12 14 16 17
19 20 20 22 23 23 23

Nodes=DOF 289 290 296 299 309 319 331
349 388 423 489 567 679 837

method smooths is simply the union of the column locations of nonzero entries
corresponding to fine DOF. Using this observation, HBMG smoother can easily be
modified to be a BPX smoother. WMHBMG is similar to HBMG, in that both are
multiplicative methods, but the difference is in the basis used. In particular, the
change of basis matrices are different as a result of the wavelet stabilization, where
the L2-projection to coarser finite element spaces is approximated by two Jacobi
iterations.

PCG stands for the preconditioned conjugate gradient method. PCG-A.MG,
PCG-BPX, PCG-HB, and PCG-WMHB involve the use of additive MG, PBX,
HB, and WMHB as preconditioners for CG, respectively. HB and WMHB are
additive versions of HBMG and WMHBMG respectively. Each preconditioner is
implemented in a manner similar to that described in [16, 17].

Finally, note that Nodes denotes the total number of nodes in the simplicial mesh,
including Dirichlet and Neumann nodes. The iterative methods view DOF as the
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Figure 2. Flop counts for single iteration of multiplicative (left)
and additive (right) methods, experiment set I.
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Figure 3. Flop counts for single iteration of multiplicative (left)
and additive (right) methods, experiment set II.

union of the unknowns corresponding to interior and Neumann/Robin boundary
DOF, and these are denoted as such.

The refinement procedure utilized in the experiments is fundamentally the same
as the 2D red-green described in [3]. We, however, remove the restrictive conditions
that the simplices for level j +1 have to be created from the simplices at level j and
the bisected (green refined) simplices cannot be further refined. Even in this case
the claimed results seem to hold. Experiments are done in the MCLite module of
the FEtk package. Several key routines from this implementation, used to produce
most of the numerical results in this paper, are given in the appendix.

Iteration counts are reported in Tables 1 and 2. The optimality of M.BPX, BPX,
WMHBMG and WMHB is evidenced in each of the experiments. We observed a
constant number of iterations independent of the number of DOF in each case. HB
and HBMG methods suffer from a logarithmic increase in the number of iterations.
Among all the methods tested, the M.BPX is the closest to MG in terms of low
iteration counts.
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Figure 4. Flop counts for variational conditions for experiment
set I (left) and experiment set II (right).

However, it should be clearly noted that in the experiments we present below,
the cost per iteration of the various methods can differ substantially. We report
flop counts of a single iteration of the above methods, see Figures 2 and 3. In
experiment set I, the cost per iteration is linear for all the methods. The WMHB
and WMHBMG methods are the most expensive ones. We would like to emphasize
that the refinement in experiment set I cannot be a good example for adaptive
refinement given the geometric increase in the number of DOF. MG exploits this
geometric increase and enjoys a linear computational complexity. Experiment set II
is more realistic in the sense that the refinement is highly adaptive and introduces
a small number of DOF at each level. One can now observe a suboptimal (logarith-
mic) computational complexity for MG-like methods in such realistic scenarios. In
accordance with the theoretical justification, under highly adaptive refinement MG
methods will asymptotically be suboptimal. Moreover, storage complexity severely
prevents MG-like methods from being a viable tool for large and highly adaptive
settings.

Coarser representations of the finest level system (3) are algebraically formed
by enforcing variational conditions. Some methods require further stabilizations in
the from of matrix-matrix products. These form the so-called preprocessing step in
multilevel methods. The computational cost of variational conditions is the same
regardless of having a multiplicative or an additive version of the same method;
see Figure 4. This computational cost is orders of magnitude cheaper than the
cost of a single iteration. However, this is the step where the storage complexity
can dominate the overall complexity. Due to memory bandwidth problems on
conventional machines, one should be very careful with the choice of datastructures.
Since only the A11 = Acoarse subblock of A is formed for the next coarser level,
the cost of variational conditions for MG, M.BPX, A.MG, and BPX is the cheapest
among all the methods. On the other hand, HBMG and HB require stabilizations
of A12 and A21 using the hierarchical basis. The WMHBMG and WMHB methods
are more demanding by requiring stabilizations of A12, A21, and A22 in (12) using
the wavelet modified hierarchical basis. Wavelet structure creates denser change
of basis matrix than that of the hierarchical basis. Therefore, preprocessing in the
WMHB and WMHBMG methods is the most expensive among all the methods.
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9. Conclusion

In this paper, we examined the Bramble-Pasciak-Xu (BPX) preconditioner in
the setting of 3D local mesh refinement and numerically compared a number of
additive and multiplicative multilevel iterative preconditioners in the setting of
two-dimensional local mesh refinements. We outlined the theoretical framework to
prove the BPX preconditioner’s optimality–uniformly bounded condition number–
on locally refined 3D meshes based on an easily implementable red-green mesh
refinement, i.e. BEK, procedure. All of the results here require no smoothness
assumptions on the PDE coefficients.

While standard multilevel methods are effective for uniform refinement-based
discretizations of elliptic equations, they tend to be less effective for algebraic sys-
tems which arise from discretizations on locally refined meshes, losing their optimal
behavior in both storage and computational complexity. To address the practical
computational complexity of implementable versions of BPX and WMHB, we in-
dicated how the number of degrees of freedom used for the smoothing step can
be shown to be bounded by a constant times the number of degrees of freedom
introduced at that level of refinement. This indicates that practical implementable
versions of the BPX and WMHB preconditioners for the 3D local refinement setting
considered here have provably optimal (linear) computational complexity per itera-
tion, as well as having a uniformly bounded condition number. A detailed analysis
of both the storage and per-iteration computational issues arising with BPX and
WMHB implementations can be found in [2].

The presented numerical experiments illustrated the effectiveness of the BPX
and stabilized HB methods in adaptive regimes. As expected, multigrid methods
are most effective in terms of iteration counts (remaining a small constant as the
DOF increase), but the suboptimal complexity per iteration in the local refine-
ment setting makes the BPX methods the most attractive. Furthermore, storage
complexity prohibits MG methods from being a viable tool for large and highly
adaptive settings. In addition, both the additive and multiplicative WMHB-based
methods and preconditioners demonstrated similar constant iteration requirements
with increasing DOF, yet the cost per iteration remains optimal (linear) even in the
local refinement setting. Consequently in highly adaptive regimes, the BPX meth-
ods prove to be the most effective, and the WMHB methods become the second
most effective. The superiority of the BPX and WMHB methods would be more
striking in large three-dimensional problems.

10. Appendix: Implementation Highlights

function [u]=additive(f,lev,hb);

%%% Additive methods: A.MG, BPX, HB, WMHB

%%% prolongation, stiffness, change of basis, one-ring

global P_12 P_23 P_34 P_45 A_1 A_2 A_3 A_4 A_5;

global S_2 S_3 S_4 S_5 ONER_2 ONER_3 ONER_4 ONER_5;

global A_hb smthKey exactC bpx;

%%% get the stiffness matrix on this level

A = eval([’A_’ num2str(lev) ]);

if (lev == 1)
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if (exactC) u = A \ f; else u = f; end

else

ONER = eval([’ONER_’ num2str(lev)]);

%%% recover the dimensions

P = eval([’P_’ num2str(lev-1) num2str(lev)]);

[r c] = size(P);

%%% shorthand for the top and tail of vectors/matrices

top_ = 1:c;

tail_ = (c+1):r;

if (hb)

u = zeros(r,1);

%%% Get the change of basis matrix for this level

S = eval([’S_’ num2str(lev)]);

%%% Transform f into the HB basis

f = f + S’*f;

%%% fine smoothing by symmetric Gauss-Seidel

u = smooth_point(A_hb,u,f,smthKey,2,lev);

else %%% additive MG

u = zeros(c,1);

d = zeros(r,1);

%%% smoothing by symmetric Gauss-Seidel

if (bpx)

d = smooth_point(A,d,f,smthKey,3,lev);

else %%% mg

d = smooth_point(A,d,f,smthKey,1,lev);

end;

%%% coarse grid restriction: f = P’*f;

f(top_,1) = f(top_,1) + P(tail_,:)’*f(tail_,1);

end;

%%% Recursion

u(top_,1) = additive(f(top_,1),lev-1,hb);

if (hb)

%%% Transform u into the HB basis

u = u + S*u;

else

%%% interpolate result: u = P*u;

u(tail_,1) = P(tail_,:)*u(top_,1);

if (bpx)

u(ONER) = u(ONER) + d(ONER);

else %%% mg

u = u + d;

end;

end;

end;

function [u]=multiplicative(b,lev,hb);
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%%% Multiplicative methods: MG, M.BPX, HBMG, WMHBMG

%%% prolongation, stiffness, change of basis, one-ring

global P_12 P_23 P_34 P_45 A_1 A_2 A_3 A_4 A_5;

global level S_2 S_3 S_4 S_5 ONER_2 ONER_3 ONER_4 ONER_5;

global A_hb smthKey exactC bpx;

%%% get the stiffness matrix on this level

A = eval([’A_’ num2str(lev)]);

if (lev == 1)

if (exactC) u = A \ b; else u = b; end;

else

ONER = eval([’ONER_’ num2str(lev)]);

%%% recover the dimensions

P = eval([’P_’ num2str(lev-1) num2str(lev)]);

[r c] = size(P);

%%% shorthand for the top and tail of vectors/matrices

top_ = 1:c;

tail_ = (c+1):r;

if (hb)

u = zeros(r,1);

f = b;

%%% Get the change of basis matrix for this level

S = eval([’S_’ num2str(lev)]);

%%% Transform f into the HB basis

f = f + S’*f;

%%% pre-smoothing by symmetric Gauss-Seidel

u = smooth_point(A_hb,u,f,smthKey,2,lev);

%%% correct f using smoother result

f(top_,1) = f(top_,1) - A_hb(top_,tail_)*u(tail_,1);

else %%% mg/bpx

u = zeros(c,1);

d = zeros(r,1);

if (bpx)

d = smooth_point(A,d,b,smthKey,3,lev);

else %%% mg

d = smooth_point(A,d,b,smthKey,1,lev);

end;

%%% coarse grid defect restriction: f = P’*(b - A*d);

if (bpx)

f = b - A(:,ONER)*d(ONER);

else %%% mg

f = b - A*d;

end

f(top_,1) = f(top_,1) + P(tail_,:)’*f(tail_,1);

end;
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%%% Recursion

u(top_,1) = multiplicative(f(top_,1),lev-1,hb);

if (hb)

%%% correct f using the coarse solve result

f(tail_,1) = f(tail_,1) - A_hb(tail_,top_)*u(top_,1);

%%% post-smoothing by symmetric Gauss-Seidel

u = smooth_point(A_hb,u,f,smthKey,2,lev);

%%% transform u back into the nodal basis

u = u + S*u;

else %%% mg/bpx

%%% interpolate result: u = P*u;

u(tail_,1) = P(tail_,:)*u(top_,1);

if (bpx)

u(ONER) = u(ONER) + d(ONER);

u = smooth_point(A,u,b,smthKey,3,lev);

else %%% mg

u = u + d;

u = smooth_point(A,u,b,smthKey,1,lev);

end

end;
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